If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+76x+2=0
a = -16; b = 76; c = +2;
Δ = b2-4ac
Δ = 762-4·(-16)·2
Δ = 5904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5904}=\sqrt{144*41}=\sqrt{144}*\sqrt{41}=12\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(76)-12\sqrt{41}}{2*-16}=\frac{-76-12\sqrt{41}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(76)+12\sqrt{41}}{2*-16}=\frac{-76+12\sqrt{41}}{-32} $
| w/29=9 | | 7y-40=16 | | 14=k/11 | | w-14=4.4 | | 4x=1/65536 | | 16.66666666666=5280/x | | 16v=672 | | s/13=28 | | 6=5x=121 | | 972=k+19 | | 8^2+8x-84=0 | | 3g=642 | | 54=2(2w+3)+2w | | j/5=22 | | 7n-3-4n=4n-3 | | 145=5w | | 65+(x+54)+70=180 | | u/31=25 | | 3.8=2x-11.2. | | 476=28h | | 338=26u | | 50/3=x/3 | | 6k^2+11k+3=0 | | 75+(x+60)+54=180 | | 50/3=3/x | | 8v=936 | | .-3w-4=w+3 | | 3x-5=12+4x/ | | 50x-16x=36x-120 | | 13=t−22 | | r−10=–4r | | (t)=-8t2+32t+40 |